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ABSTRACT.

Shock Models Arising from Processes with Stationary, Independent, Non-

negative Increments
by

(Harry Joe and Frank Proschan

Let H(t) be the life distribution of a device subject to shocks

governed by an integer-valued stochastic process with stationary, in-

dependent, nonnegative increments. H(t) is a function of the probabi-

lities !of surviving the first k shocks, k a 1, 2, .... We show that

H(t) inherits various aging properties (IFR, IFRA, NBU) of the discrete

survival function . Analogous results hold in the continuous case

where H(t) is the life distribution of a device subject to wear accord-

ing to a wear process with stationary, independent nonnegative incre-

ments. In the cumulative damage model for the wear process or for the

shock process, H is IFRA if the process enjoys a TTProperty.

~i.'
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1. Introduction and Summary.

In Esary, Marshall, and Proschan (1973) Chereafter referred to as

EMP (1973)J, the life distribution H(t) of a device subject to shocks

governed by a Poisson process is considered as a function of the proba-

bility V of surviving the first k shocks, k = 1, 2, .... EMP(1973)

show that the continuous life distribution H(t) inherits various aging

properties of the discrete survival function Vk such as [FR, IFRA, NBU,

etc.

In Section 2, we extend some of these results to the case in which

shocks occur according to an integer-valued stochastic process {N(t),

t a 0) with stationary, independent, nonnegative increments (i.e., a

generalized Poisson process). In Section 3, similar results are ob-

tained in the continuous case of a wear process {W(t), t k 0) with wear

occurring according to a stochastic process with stationary,independent,

nonnegative increments. In Section 4, we present some examples of well

known generalized Poisson processes. Finally, in Section 5, we study

cumulative damage models for the shock process {N(t), t a 0) and the

wear process (W(t), t k 0). In the cumulative damage model for the

shock process, the amounts of damage caused by the shocks are indepen-

dently distributed according to a common distribution, and the device

fails when the total accumulated damage exceeds a specified threshold.

In this model, the resulting probabilities Vk enjoy the discrete IFRA

property, and thus the life distribution H(t) of the device is IFRA.

In the cumulative damage model for the wear process, the amount of da-

mage caused by a fixed amount of wear always has the same distribution,

and, as before, the device fails when the total accumulated damage

L _ _ _ _ _ _ _
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e"ceds a specified threshold. In this Model, the resulting proba-

bilities Iu of surviving the first u units of wear enjoy the IFRA
u

property (under one assumption) and thus, the life distribution H(t)

is again IFRA.

4

*1
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2. Generalized Poisson Process

Let a device be subject to shocks that are governed by a genera-

lized Poisson process. A generalized Poisson process is an integer-

valued stochastic process (N(t), t k 0) with stationary, independent,

nonnegative increments (see Parzen, 1962, p. 126). Suppose the pro-

bability of the device surviving k shocks is fk where 1 a 0 k fr, a

S". It follows that the survival function 9(t) of the device is

given by:

11(t) a ko 'r PN(t) - kJ. (2.1)

2.1. Definition. A process {N(t), t k 0) is said to be TP2 if

PCN(t) a k is TP2 in t c £0, -) and k c (0, 1, 2, ...1. (See Karlin,

1968, for the definition of TP2.)

The following theorem extends a basic result of EMP(1973).

2.2. Theorem. Ci) Let Ik be discrete NBU (F s krl form, k-
-k kim k m

0, 1, 2, ...). Then H given in (2.1) is NBU. (ii) Let f'k be discrete

IFR (V is log concave in k a 0, 1, 2, ...) and let (N(t), t Z 0) bek 1/k

TP2 . Then H is IFR. (iii) Let fr be discrete IFPRA, i.e., fr is de-kk
creasing in k = 0, 1, 2, .... Let (H(t), t a 0) be TP2 . Then H is

IFRA.

Proof. Let t, s a 0. Then

k
9(t + s) V P[N(t * s) = k] a ! k E PEN(t) = miP[N(s) a k-mi

kO k-O MaO

a I PCN(t) a a] kL I P[N(s) - k -mJ

a " I PLN(t) am ! a) PEN(s) a kJ.

moo kwO kim
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The second equality follows from the fact that the increments are

stationary and independent.

(i) Since V is discrete NBU, then
k

YT(t +s) I EN(t) .m)V I I PCN(s) -k]
Mao kUO k

No(t Rs),

so that H is NBU.

(ii) Since 'Fk is discrete IFR, then P k is log concave in k, or equiva-

lently, P kmis TP2 in k and -mn. Since PEN(s) =k] is TP2 in k and s, it

follows from the Basic Composition Formula (Karlin, 1968, p. 17) that

; k+ PEN(s) - kJ is 1I'2 in s and -in. Applying the Basic Composition
knO ki
Formula once more, and the fact that P EN(t) = ml is TP2 in -m and -t, we

conclude that Tf(tes) is TP2 in s and -t. Thus fT is log concave and therefore

IFR.

(iii) Let QN~t) (- denote the probability generating function of

N(t). Then foro :gC :g ,

k ) PEN(t) uU - H(t) - (t) W
k-0O

a HE) Q N ~ ( ) Jt eU I TIt ) - e t l o g

The second equality follows from the relationship between the probability

generating function and the moment generating function. Note also that

for 0 s 4 tl,PEN(l) - 0J 1 %j(l) (C) !E l,so that

o 1 - log QNcl) (c) ! -log P [N(l) a1.

Since Ir is discrete IFRA, then IF is decreasing in k. It follows
kc k

that P ckchanges sign at most once, and if one sign change does occur,

kr ' ~
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it occurs from *to -,for 0 :5 c 1. Since P((N(t) a k] is TP2, by

the Variation Diminishing Property (Karlin, 1968, Chapter 5), JT(t) - ee

changes sign at most once, and if once, from + to -, for 0 < 0 :5 -log PEN(l)uOJ.

Note also that

ff(t) a PEN(t) a 0) a QN(t)(0 ) %(l)f) *-t(-log PCN(l) a0])

It follows that iT(t) 2: e- for 0 k -log P[N(l) -0). Thus H(t) - et

changes sign at most once, and if once, from + to -, for e > 0. By a charac-

terization of IFRA distributions (Barlow and Proschan, 1975, p. 89), Hi

must be IFRA. j
2.3 Remark. In a dual fashion, similar results hold for the dual

classes Nilt, DFR, DFRA. The NBIJE and DMRL classes and their duals have

not been successfully treated.
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3. Continuous Wear Processes

In this section we obtain analogous results for continuous wear

processes. Let {W(t), t : 01 be a stochastic process with stationary,

independent nonnegative increments with density function f w(t)().

Suppose now a device is subject to wear in accordance with this sto-

chastic process. Let P u be the probability of surviving a cumulative

wear of u units, with Pusatisfying I = PO 2! P-- for o < u 5 u'.
u 0 u u

We express the survival function ](t) of the device as

IT~t) u u fw(t)(u) du. (3.1)

3.1 Definition. The process {fV(t), t t 0) is said to be TP2 if

fwct) Cu) is TP2 in t, u C [0, ).I

We may now state and prove the continuous analogue of Theorem 2.2.

3.2 Theorem. (i) Let Pu be NBU. Then H given in (3.1) is NBU.

(ii) Let Fu be IFR. Let (W(t), t a 0) be TP2 . Then H is IFR. (iii)

Let P u be IFRA and (W(t), t a 0) be TP2  Then H is IFRA.

Proof. Let t, s a 0. Then H (t + s) = Pufw(t+s)(U) du

a Ifw(t) * w(s) (u) du

SJ Iu fC C u - X) Cwu (x) dxdu

0 r f (x)frf (u -x) I du dx
0w(t) x w(s) u

a J0 ()(x) f0 f )(u) IF du dx.

w(t) 0w(s) U~x

(i) and (ii) now follow as in Theorem 2.1.

(iii) Let M w(t)(.) be the moment generating function of W(t).
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Then or 0' c ~ rc e~')f (~du -11(t - f Cuf u
Ou -W(t) 0 W(t)

ft)-MW(t) (- wt-o l) I)-)

For 0 4' 4 , we have 0 < M (1 )(-)~1 so that 0 1 -log jw(l) <

Completing the proof as in Theorem 2.2 (iii), we conclude that H is IFRA. I
3.3 Remark. As in the discrete case, dual results hold in the con-

tinuous case for NWU, DFR, OFRA. Results have not yet been obtained for

the NBUE, DMRL classes and their duals.
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4. Examples.

, generalized Poisson process (Parzen, pp. 126-127) is an integer-

valued stochastic process {N(t), t 2 0) with stationary, independent,

nonnegative increments. In a generalized Poisson process, events

can occur simultaneously. A generalized Poisson process necessarily

has a characteristic function of the form ON(t)(u) = e~t[(u) -lJ forco iku

some A > 0 and some characteristic function 0(u) =kE0Pk e This

form of characteristic function for N(t) arises when times of possible events

follow a Poisson process with intensity X and the number of events

occurring at such times are independently distributed with probability

atoms

If we choose:

(iS #(u) = ev (eiu 1) , the Poisson characteristic function,or

(ii) 0(u) = (p(1-qe )-l , the negative binomial characteristic function,

or

(iii) 0(u) - (peiu + q)n, the binomial characteristic function,

we obtain a generalized Poisson TP2 process with corresponding frequency

function:

i) PCN(t) = k] -e L i k , or
k! j=0 j!
k -t I (rj+kl) (At)pr

(ii) PEN(t) = k] = q e k orj.0 kj!

(iii) PCN(t) = k] -At (nJ) Lt.L qni-k

An example of a stochastic process (W(t), t k 0) with stationary, inde-

pendent nonnegative increments such that the density fWt)(u) is TP 2 in t,

u e (0, -) is the gamma process:

f u) *cit cat-I e -u/r (at), a > o.
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S. Cumulative Damage

We next consider a model in which wear causes damage, damages

cumulate, and the device fails whon a specified cumulative damage thres-

hold is exceeded. Ile assume that the amount of damage caused by a fixed

amount of wear always has the same distribution. Let the amount of

damage caused by one unit of wear have distribution F, infinitely divi-

sible and satisfying F(0") = 0. Let the damage threshold be denoted by x,

and the probability of surviving u units of wear be denoted by P . Then
u

PT F(u)(x), defined more precisely below. Wie shall show that under an
U

appropriate assumption, L/u = rF(u)(x)]1/u is decreasing in u > 0 for
u

fixed x, so that IF has the continuous IFRA property.

Let X (.) be the unique complex-valued function of t with X(O) = 0

that is continuous at 0 satisfying *(t) = ex(t) (see Chung, p. 241), where

f is the characteristic function corresponding to F. Since f is an in-

finitely divisible characteristic function, 0rC.) = e rX() is a characteristic

f-nrtion for all r Z 0 (see Parzen, p. 124). Let F(r)be the distribution

function with characteristic function *r Then

F (r) * F(s) = F (res) , r, s > O.

5.1 Theorem. Let x be a continuity point of F(r ) for all r k 0.

Then F(r) (x)]1 /r is decreasing in r > 0.

Proof. For an arbitrary distribution function G with G(O) = 0,

[G(n)(x) I/n is decreasing in positive integer n for each fixed x 2 0

(see Barlow and Proschan, 1975, p. 94), where G(n) is the n-fold convolution
mI  m2

of G. Let r1 < r2 be positive rationals, rI  n 2 a-"' 2' 1' M2'

n are positive integers. Then applying the referenced theorem with G F

. . ..-.... ....
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we have:

{(FCl/n)) CW2) (x)) 1/22 -:5 ( Fl/n))Cml) (x) }/ml or

{F(m2/n) x) n/m2  S (F(ml/n)(X))n/m1 or
(F(r9(3)}l/r2 g_{(l()lr

Therefore, {F(r) x) /r is decreasing in r over the positive rationals

for each fixed x a 0.

Now suppose x is a continuity point of F(r) for each r z 0. Let r

and s be positive reals, r < s. Let {r I be a sequence of rationals suchn

that rm + r and r < s for all n; let {s I be a sequence of rationals suchhar m + n n  n (rd) /r (s n )  l
that s + s. Then r -< s for all n implies that F (x)J l/ >F M I n

for all n. By the Continuity Theorem,

F(rn)(x) * (r) (x) and F(sn)(x) F(S)(x). Thus [F(rn)(x)]l/rn

+ [F (r) x)l/r and [FC()(x)]l/sn E [F(s)(x)JI with [F(r)(x)jI/r >

(s) 1/s (r) 1/r
EF (x)] / . Thus we conclude {F (x)) is decreasing in r z 0. 0.

Using the IFRA property of P u and of 1F' we obtain the following theorems.

(u
5.2 Theorem: Let 1-(t) = f F(u)(x)f (t)(u) du represent the survival pro-

bability in the cumulative damage model for the wear process (w(t), t k 0).

Suppose x is a continuity point of F( u ) for all u : 0 and suppose {w(t), t k 01

is TP2. Then H is IFRA. It

Proof: This follows from theorem 5.1 and Theorem 3.2 iii,

5.3 Theorem. Let 11(t) * GCk)cx)P(N(t) - k) represent the survival
k-0

probability in the cumulative damage model for the shock process (N(t), t k 01,

where G is the distribution function for damage due to a single shock (G(0-) - 0)

and G (k  is the k-fold convolution of G. Suppose {N(t), t k 0) is TP2.

Then H is IFPA.

Proof. This follows from Theorem 2.2(iii) and the fact that (G(k)(x))I/k is

decreasing in k for each x a 0.

II
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